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a b s t r a c t

In this research work we introduce and analyze an explicit conservative finite difference
scheme to approximate the solution of initial-boundary value problems for a class of lim-
ited diffusion Fokker–Planck equations under homogeneous Neumann boundary condi-
tions. We show stability and positivity preserving property under a Courant–Friedrichs–
Lewy parabolic time step restriction. We focus on the relativistic heat equation as a model
problem of the mentioned limited diffusion Fokker–Planck equations. We analyze its
dynamics and observe the presence of a singular flux and an implicit combination of non-
linear effects that include anisotropic diffusion and hyperbolic transport. We present
numerical approximations of the solution of the relativistic heat equation for a set of exam-
ples in one and two dimensions including continuous initial data that develops jump dis-
continuities in finite time. We perform the numerical experiments through a class of
explicit high order accurate conservative and stable numerical schemes and a semi-implicit
nonlinear Crank–Nicolson type scheme.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Numerical approximations to the solution of continuum physical models allow to better understand the behavior of their
dynamics when analytical solutions are not available. In this paper we propose a conservative numerical scheme to approx-
imate the solution of initial-boundary value problems for a class of limited diffusion Fokker–Planck equations.

The classical Fokker–Planck formulation [24,32] describes the transport of a physical magnitude u P 0 in a continuum
medium and can be understood as an extension of the classical theory of heat conduction by Fourier [16]. The general form
of the Fokker–Planck equation is expressed as
ut ¼ rðgðuÞruÞ t > 0 gðuÞ > 0 ð1Þ
This equation represents the continuum model of many complex physical systems. Some examples include porous media
equations, plasma equation, radiative transfer, image denoising by anisotropic diffusion and phenomena ruled by diffusion
transfer in anisotropic media [5,7,11,15,22,24,25,27,32,34,35]. Processes described by this equation are related to transport
by (anisotropic) diffusion where gðuÞ > 0 represents the diffusion coefficient. Several authors have pointed out that the infi-
nite speed of propagation prescribed by Fourier theory of heat conduction is not appropriate for the description of the trans-
port of many dissipative processes in thermodynamics and heat transfer [10,18,20,25,26]. The main limitation associated to
the general model is that its solution does not contain diffusion fronts moving with finite speed. This issue has been a subject
. All rights reserved.
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of wide discussion and research during the last fifty years with well founded attempts to correct it and overcome its limi-
tations [10,18,20,26].

Rosenau in [26] is the first one propounding satisfactory premises for a model for heat conduction consistent with the
theory of special relativity in which the flux saturates as gradients tend to infinity. He proposes a generalized Fokker–Planck
equation of the form
ut ¼ rf ðu;ruÞ ð2Þ
that overcomes the limitations of (1). The solution to this equation allows diffusion fronts propagating at a prescribed finite
speed. Rosenau model was subsequently named relativistic heat equation [6,8,19,35,34] .

The relativistic heat equation represents a mathematical model describing the transport by diffusion with finite speed of
propagation. The diffusion of relativistic heat equation is confined to a region limited by a front that propagates at the speed
of light. Theory of existence and uniqueness of the solution of the relativistic heat equation has been proved by Andreu and
collaborators in [1,2,4,5] as a particular case of a generalized class of the Fokker–Planck equations. These authors develop a
mathematical theory of the entropy solutions associated to (2).

The main goal of this research work consists of understanding better the dynamics of the physical processes described by
the relativistic heat equation through numerical approximations. To that end we design a reliable conservative numerical
scheme to approximate the solution of a wide class of Fokker–Planck equations that are able to describe transport phenom-
ena containing propagating fronts moving with finite speed. This class of limited diffusion equations includes the relativistic
heat equation as a significant model example.

In this paper we propose a conservative numerical scheme to approximate the solution of a wide class of Fokker–Planck
equations and prove that the numerical scheme preserves positivity, satisfies a discrete local maximum principle and is sta-
ble under a Courant–Friedrichs–Lewy parabolic time step restriction [12,21]. We focus on the numerical approximation of
the relativistic heat equation which is a significant model example of the mentioned generalized class of limited diffusion
equations. We analyze the dynamics of the relativistic heat equation and observe the presence of a singular flux and an im-
plicit combination of nonlinear effects that include anisotropic diffusion and hyperbolic transport. We then approximate the
solution of a set of examples for the relativistic heat equation through a class of explicit high order accurate conservative and
stable numerical schemes and a semi-implicit nonlinear Crank–Nicolson type scheme that improves computational effi-
ciency over the explicit ones.

The paper is organized as follows. In Section 2 we present a heuristic approach on the relativistic heat equation. Section 3
is devoted to propose and analyze an explicit conservative numerical scheme to approximate the solution of the generalized
class of Fokker–Planck equations. In Section 4 we provide one- and two-dimensional explicit numerical schemes to approx-
imate the solution of the relativistic heat equation and we formulate a semi-implicit nonlinear Crank–Nicolson type numer-
ical scheme to relax the Courant–Friedrichs–Lewy parabolic restriction. Section 5 includes the formulation for high order
accurate implementations of the scheme and a set of numerical tests for the relativistic heat equation in one and two dimen-
sions. In Section 6 we draw our conclusions.

2. A heuristic approach to the relativistic heat equation

The heat equation was proposed by Fourier as a mathematical model to describe heat conduction. The equation reads as
ut ¼ mDu ð3Þ
where u represents the temperature distribution and m > 0 is the coefficient of heat diffusion in a specific media. Eq. (3) rep-
resents the simplest case of a Fokker–Planck equation Eq. (1) with gðuÞ ¼ m. When the initial data for the heat equation is a
punctual impulse of heat (represented by a delta function) the solution of the equation at every time t > 0 is a Gaussian dis-
tribution centered at the point where the heat impulse is applied. This property on the solution of (3) implies that the speed
of heat propagation is infinite.

We can express Eq. (3) in conservation form as
ut þr �um
ru
u

� �
¼ 0 ð4Þ
where
�um
ru
u

ð5Þ
represents the heat flux defined as the conserved variable multiplied by the flow velocity. The velocity field
~v ¼ �m
ru
u

ð6Þ
is proportional to the possibly unbounded gradient of u and therefore the velocity of heat transfer ~v in (4) is not limited.
Rosenau proposes to use a different velocity field~vR instead of~v in (4) to enforce the magnitude of the velocity field not to

exceed the speed of light c > 0. Then the modified heat equation
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ut þrðu~vRÞ ¼ 0 ð7Þ
would approach classical heat equation (4) for small j~vRj and propagate the solution with limited speed for large j~vRj.
To this end ~vR is defined from ~v by weightening ~vR with the dimensionless Lorentz factor W ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1�j~vR j
2

c2

q such that

~v
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j~vR j2

c2

q ¼ ~v ð8Þ
To determine an explicit expression of ~vR let us proceed as follows. Let ~n ¼ ~v
j~v j be the unit vector of ~v . Then
~vR ¼~nj~vRj ð9Þ
We can get j~vRj from (8) by calculating the square of the magnitude of ~v
~v �~v ¼ j~v j2 ¼ j~vRj2

1� j~vR j2
c2

ð10Þ
and from this we obtain
j~vRj ¼
j~v jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j~vj
2

c2

q ð11Þ
Thus, from (9)
~vR ¼~nj~vRj ¼
~v
j~vj

j~v jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j~vj

2

c2

q ¼
~v

1þ j~vj
2

c2

ð12Þ
Therefore, using (6) we obtain
~vR ¼ �
mru

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

c
jruj

u

� �2
r ¼ � mruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ m
c jruj
� �2

q ð13Þ
The resulting equation with the new flux fR ¼ u~vR is the relativistic heat equation
ut ¼ r
muruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ m
c

� �2jruj2
q

0
B@

1
CA ð14Þ
Let us observe that in the case that c is a parameter such that c ! þ1, Eq. (14) tends to the classical heat equation [9]. More-
over, (as proved in [4]) if m! þ1, the relativistic heat equation tends to the transparent media diffusion equation
ut ¼ cr u
ru
jruj

� �
ð15Þ
Andreu et al. in [1–5] have performed an extended analytical study on the relativistic heat equation and its solution for a
particular class of initial data. However there are not at the moment explicit solutions of the relativistic heat equation.

Our goal is to propose a consistent and stable numerical scheme to approximate the solution of the relativistic heat equa-
tion and be able to study a wide class of initial-boundary value problems. To tackle this goal we first develop a heuristic anal-
ysis to better understand the dynamics of the solution of the relativistic heat conduction model.

The one-dimensional relativistic heat equation can be expressed as
ut ¼ m
uuxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ r2u2
x

p
 !

x

; t > 0; u P 0 ð16Þ
where m > 0 and r ¼ m
c.

Expanding spatial derivatives of the flux we observe that (16) can be expressed as
ut ¼ c
ruxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ r2u2
x

p
 !3

ux þ m
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ r2u2
x

p
 !3

uxx ð17Þ
which represents the relativistic heat equation splitted into two terms, a Hamilton–Jacobi term that depends on u and its
derivative and a diffusive type term, respectively. The Hamilton–Jacobi term
c
ruxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ r2u2
x

p
 !3

ux ð18Þ
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depends on u in a nonstandard way from the point of view of classical theory of viscosity solutions. Hamiltonians of classical
Hamilton–Jacobi equations are non-decreasing functions on u and their solutions are continuous and develop rarefactions
and discontinuities only in derivative (kinks) [13]. Recently, Giga in [17] extends classical theory on viscosity solution for
Hamilton–Jacobi equations to the case where the Hamiltonian is a non-increasing function of u. In this case he proves that
the solution might develop not only rarefactions and kinks but jump discontinuities (shocks) in finite time.

We focus on the Hamiltonian (18) that is a non-increasing function of u and from the following analysis we observe that it
resembles a hyperbolic advection equation around discontinuities.

Let us consider the Hamilton–Jacobi equation
ut ¼ c
ruxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ r2u2
x

p
 !3

ux ð19Þ
Around jump discontinuities or ‘‘large gradients” where juxj � u, the ratio u
rjux j � 1 is small and we can re-write Eq. (19) as
ut ¼ c
rux

rjux jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð u

rux
Þ2 þ 1

q
0
B@

1
CA

3

ux ð20Þ
and defining sgnðuxÞ ¼ ux
jux j we obtain
ut ¼ c
sgnðuxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
rux

� �2
þ 1

r !3 ux ð21Þ
We can express this equation using the Taylor expansion of ð1þ yÞ�
3
2 ¼ 1� 3

2 yþ 15
8 y2 þ Oðy3Þ (convergent for jyj < 1) for

y ¼ u
rux

as,
ut ¼ c sgnðuxÞ 1� 3
2

u
rux

� �2

þ 15
8

u
rux

� �4

� � � �
 !

ux ð22Þ
Then, assuming u
rjux j � 1 the above equation approaches to
ut � c sgnðuxÞux ð23Þ
which is a linear advection.
Eq. (19) approaches linear Eq. (23) around jump discontinuities and propagates them at speed c > 0 according to the

direction prescribed by the sign of ux. Thus the non-classical Hamilton–Jacobi term in (17) is a convective term that will
be responsible of the development of waves, kinks and shocks in the solution where shocks will not propagate faster than
the speed of light c. This argument is consistent with the results and theory proposed by Giga in [17].

Similarly in two dimensions we can obtain the splitted form of the relativistic heat equation as
ut ¼
mr2jruj4

ðu2 þ r2jruj2Þ
3
2
þ mu

ðu2 þ r2jruj2Þ
3
2
ðu2 þ r2u2

yÞuxx � 2r2uxuyuxy þ ðu2 þ r2u2
x Þuyy

� �
ð24Þ
where r ¼ m
c.

This equation is parabolic when u is non-negative and has a singularity for u ¼ 0 and jruj ¼ 0.
Expression (24) contains the hyperbolic term
mr2jruj4

ðu2 þ r2jruj2Þ
3
2

ð25Þ
which is responsible for the finite speed of propagation of jump discontinuities. Indeed considering Eq. (24) removing the
second order term we get the Hamilton–Jacobi equation
ut ¼ c
rjruj

ðu2 þ r2jruj2Þ
1
2

" #3

jruj ð26Þ
that belongs to a class of Hamilton–Jacobi equations which viscosity solutions contain kinks, rarefactions waves and shocks
(see [17]).

We observe that as time evolves in (17) and (24) the effects of the parabolic terms might diffuse possible present shocks.
However at the boundary of the support of u where u � 0 the local anisotropic diffusion vanishes and Eqs. (17) and (24)
might develop propagating shocks called ‘‘diffusion fronts” that expand the support of the solution.

It has been proved by Andreu et al. [1,2,4,5] that in the case that the initial data of the relativistic heat equation is a func-
tion of compact support there exists an entropy solution that contains ‘‘diffusion fronts” that propagate at speed c.
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In the next section we will design a numerical scheme to approximate the solution of the class of Fokker–Planck equations
that are able to capture diffusion fronts when they are present in the solution as in the case of the relativistic heat equation.

3. Conservative finite difference schemes for a class of limited diffusion equations

In this section we propose a conservative finite difference numerical scheme that approximates the solution of a class of
Fokker–Planck limited diffusion equations to which the relativistic heat equation is a particular case. The explicit numerical
scheme is consistent and stable under a parabolic type Courant–Friedrichs–Lewy restriction on the time step [12]. The
scheme conserves mass exactly, preserves positivity and satisfies a discrete local maximum principle. In addition we propose
nonlinear Crank–Nicolson implicit and semi-implicit versions of the scheme that relax the parabolic Courant–Friedrichs–
Lewy restriction improving computational efficiency.

Let us consider the generalized Fokker–Planck equation in m spatial dimensions
ut ¼ r � fðu;ruÞ; t > 0 ð27Þ
where x ¼ ðxð1Þ; . . . ; xðmÞÞ and uðx; tÞ is defined for x 2 D ¼ ½a; b�m; a < b; f ¼ ðf ð1Þ; . . . ; f ðmÞÞ.
We impose the initial data
uðx;0Þ ¼ u0ðxÞ; x 2 D ð28Þ
under homogeneous Neumann boundary conditions,
@uðx; tÞ
@xðiÞ

¼ 0; x 2 @D and t > 0 1 6 i 6 m ð29Þ
We express (27) in explicit partial derivatives
ut ¼
Xm

i¼1

@

@xðiÞ
f ðiÞðuðx; tÞ;ruðx; tÞÞ
	 


ð30Þ
where
ruðx; tÞ ¼ @u
@xð1Þ

;
@u
@xð2Þ

; . . . ;
@u
@xðmÞ

� �
ð31Þ
We set the computational domain as follows. We consider a uniform mesh on D defined from a partition of [a,b] in N sub-
intervals of length h ¼ b�a

N . Let us define the vector of indices j ¼ ðj1; j2; � � � ; jmÞ
T . Then, the nodes of the grid are defined by
xj ¼ xð1Þj1
; . . . ; xðmÞjm

� �
ð32Þ
where 1 6 jk 6 N and xðkÞjk
:¼ aþ jkh.

Next let us introduce the concept of conservative numerical scheme associated to (30).
We denote by un

j the numerical approximation of the solution of (27), uðxj; tnÞ where xj is defined as (32) and
tn ¼ nDt; Dt > 0 the time step size.

Definition 1. A first order accurate conservative finite difference scheme in m dimensions for solving (30) reads as
unþ1
j ¼ un

j þ
Dt
h

Xm

i¼1

~f ðiÞ
jþei

2

� ~f ðiÞ
j�ei

2

� �
ð33Þ
where j ¼ ðj1; j2; . . . ; jmÞ is a fixed coordinate location, ei 2 Rm is the unit vector eiðkÞ ¼ dik and ~f ðiÞ
jþei

2

is a scalar numerical flux
defined as a function of the variables
~f ðiÞ
jþei

2

¼ ~f ðiÞ
jþei

2

un
j�p1ei

; . . . ;un
jþq1ei

; ðruðiÞÞx
jþ

ei
2

� �
ð34Þ
which is consistent with the flux in (30) in the direction of ei; f ðiÞ, i.e.,
~f ðiÞ
jþei

2

ðu; u; . . . ; u; wÞ ¼ ~f ðiÞðu; ðw; . . . ;wÞTÞ ð35Þ
The term ðruðiÞÞx
jþ

ei
2

is defined by a vector of first order divided differences in the direction ei that approximates the partial
derivatives at the location xjþei

2

ðruðiÞÞx
jþ

ei
2

¼ ðd1; . . . ;di; . . . ; dmÞ ð36Þ
where
di ¼
uðxjþei

Þ � uðxjÞ
h

ð37Þ
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and for k–i
dk ¼
1

2h
uðxjþek

Þ þ uðxjþekþei
Þ

2
� uðxj�ek

Þ þ uðxj�ekþei
Þ

2

� �
ð38Þ
Let us consider the class of Fokker–Planck equations as Eq. (30) with a flux of the form
f ðu;ruÞ :¼ gðu; jrujÞru ð39Þ
where the diffusion coefficient gðz;wÞ is a non-negative real function of its arguments which is uniformly bounded, i.e., there
is a constant M > 0 such that
gðz;wÞ 6 M; for all z;w ð40Þ
This type of flux functions allow to define anisotropic diffusion equations with anomalous diffusion (depending on u andru
) [24,34,35].

Expression (30) for this family of fluxes reads as
ut ¼
Xm

i¼1

@

@xðiÞ
gðuðx; tÞ; jruðx; tÞjÞ @u

@xðiÞ

� �
ð41Þ
where
jruðx; tÞj ¼
Xm

k¼1

@uðx; tÞ
@xðkÞ




2
" #1

2

ð42Þ
Next, to design a conservative finite difference scheme for Eq. (41), we define a consistent numerical flux satisfying (34) and
(35) as
~f ðiÞ
jþei

2

¼ g
uj þ ujþei

2
; jruðiÞjjþei

2

� �
ujþei

� uj

h
ð43Þ
where
jruðiÞjx
jþ

ei
2

¼ d2
i þ

X
k–i

d2
k

" #1
2

ð44Þ
with di and dk computed from expressions (37) and (38), respectively.
The complete numerical scheme reads as
unþ1
j ¼ un

j þ
Dt

h2

Xm

i¼1

g
uj þ ujþei

2
; jruðiÞjx

jþ
ei
2

� �
ðujþei

� ujÞ � g
uj�ei

þ uj

2
; jruðiÞjx

j�
ei
2

� �
ðuj � uj�ei

Þ
� �

ð45Þ
Theorem 1. The conservative numerical scheme (45) associated to the Fokker–Planck equations as Eq. (41) satisfying (40) for
some M > 0 has the following properties:

(1) The scheme preserves positivity and is stable under the following Courant–Friedrichs–Lewy restriction on the time step
Dt

h2 6
1

2mM
ð46Þ
(2) The numerical scheme satisfies a local maximum principle under condition (46), i.e., the magnitude of local maxima (local
minima) does not increase (decrease) along time evolution.
Proof. We provide the proof for the case m ¼ 1 and sketch how to extend it to any dimension m. The numerical scheme (45)
for m ¼ 1 can be written as
unþ1
j ¼ un

j þ
Dt

h2

Xm

i¼1

g
un

j þ uxn
jþ1

2
;

un
jþ1 � un

j

h




� �
un

jþ1 � un
j

� �
� g

un
j�1 þ un

j

2
;

un
j � un

j�1

h




� �
un

j � un
j�1

� �� �
ð47Þ
Let us define
Aðu�;uþÞ :¼ g
u� þ uþ

2
;

uþ � u�
h

 � �
ð48Þ
We can write (47) in terms of A as
unþ1
j ¼ Dt

h2 Aðun
j�1; u

n
j Þun

j�1 þ 1� Dt

h2 Aðun
j�1;u

n
j Þ þ Aðun

j ;u
n
jþ1Þ

� �� �
un

j þ
Dt

h2 Aðun
j ;u

n
jþ1Þun

jþ1 ð49Þ
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In order to preserve positivity, we need to prove that un
j P 0; 8j implies unþ1

j P 0; 8j. Since Aðu�;uþÞP 0 for all u�;uþ and
from (40) we have that Aðu�;uþÞ 6 M for all u�; uþ then, if Dt is chosen under restriction (46) the positivity is satisfied,
1� Dt

h2 A un
j�1;u

n
j

� �
þ A un

j ;u
n
jþ1

� �� �
P 1�

A un
j�1;u

n
j

� �
þ A un

j ;u
n
jþ1

� �
2M

P 0 ð50Þ
Thus (46) ensures the property of positivity preserving.
In addition under restriction (46) each unþ1

j is a nonlinear convex combination of un
j�1;u

n
j and un

jþ1 and therefore the
scheme is stable and the local discrete maximum principle is satisfied.

The proof for m > 1 follows the same line of reasoning where the value of unþ1
j is a convex combination of 2m þ 1 terms,

all coefficients are always non-negative except the ones corresponding to un
j . To enforce the positivity of the central

coefficient it is enough that condition (46) is satisfied following the same argument as the one for m ¼ 1.

The total mass of the computed solution from one time step to the next one is exactly conserved due to the telescoping
cancellation obtained when calculating the sum of the uj and the application of the homogeneous Neumann boundary
conditions. h

We remark that the standard finite difference methods to approximate the solution to a general diffusion equation con-
sists of using central differences in all derivatives present in the second order differential operator. However depending on
the complexity of the diffusion operator not all of the schemes can be written in conservation form consistently with our
Definition 1. An example of semidiscrete central difference scheme used in [11] for a particular one-dimensional diffusion
equation can be proved to be conservative satisfying Definition 1.

Next we use the proposed numerical scheme to approximate the solution of the relativistic heat equation. The relativistic
heat equation
ut ¼ m
uruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ m
c

� �2jruj2
q

0
B@

1
CA ð51Þ
belongs to the class of Eq. (41) with a flux g defined as
gRHEðz;wÞ ¼
mzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ r2w2
p ð52Þ
where m > 0 and r > 0 are constants.
In the next section we propose explicit and implicit finite difference numerical schemes to approximate the solution of

(51).

4. Finite difference numerical scheme for the approximation of the relativistic heat equation

In this section we propose finite difference schemes for the one- and two-dimensional relativistic heat equation that sat-
isfy the properties described in Theorem 1 in the previous section.

4.1. One-dimensional numerical approximation of the relativistic heat equation

For computational purposes to avoid dividing by zero when ux ¼ 0 we consider a regularization of the one-dimensional
relativistic heat equation consisting of adding a small constant � > 0 of the order of machine rounding error in the denom-
inator of the flux. We will solve
ut ¼ m
uuxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ r2u2
x þ �

p
 !

x

; t > 0; u P 0 ð53Þ
with initial data
uðx;0Þ :¼ u0ðxÞP 0 a 6 x 6 b ð54Þ
where u0ðxÞ is of compact support in �a; b½ and homogeneous Neumann boundary conditions: uxða; tÞ ¼ uxðb; tÞ ¼ 0.
The � perturbation will not affect the accuracy of the numerical approximation since the double limit
lim
ðn;gÞ!ð0;0Þ

ngffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q ¼ 0 ð55Þ
exists.
We consider the computational mesh defined for N number of subdivisions of the interval such that h ¼ b�a

N is the spatial
step size and xj ¼ aþ jh; j ¼ 0;1; . . . ;N. We denote by tn ¼ nDt; n P 0 where Dt > 0 is the time step size.
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The numerical scheme for the approximation of the one-dimensional relativistic heat equation, Eq. (53), will read as
follows:
unþ1
j ¼ Dt

h2 Aðun
j�1; u

n
j Þun

j�1 þ 1� Dt

h2 Aðun
j�1;u

n
j Þ þ Aðun

j ;u
n
jþ1Þ

� �� �
un

j þ
Dt

h2 Aðun
j ;u

n
jþ1Þun

jþ1 ð56Þ
where
Aðun
j ;u

n
jþ1Þ ¼

m
2 ðun

j þ un
jþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

un
j
þun

jþ1
2

� �2
þ r2

un
jþ1
�un

j

h

� �2
þ �

r ð57Þ
and Dt
h2 6

1
2m to satisfy condition (46) in Theorem 1.

To relax the Courant–Friedrichs–Lewy time step restriction we can use a fully implicit Crank–Nicolson scheme [14] or a
semi-implicit one, both second order accurate in space and time.

Let an
j ¼ Aðun

j ;u
n
jþ1Þ. The fully implicit Crank–Nicolson scheme will read as follows. Solve unþ1

j from the nonlinear system of
equations
�1
2

Dt

h2 anþ1
j�1 unþ1

j�1 þ 1þ 1
2

Dt

h2 anþ1
j�1 þ anþ1

j

� �� �
unþ1

j � 1
2

Dt

h2 anþ1
j unþ1

jþ1

¼ 1
2

Dt

h2 an
j�1un

j�1 þ 1� 1
2

Dt

h2 an
j�1 þ an

j

� �� �
un

j þ
1
2

Dt

h2 an
j un

jþ1 ð58Þ
for j ¼ 1;2; . . . ;N � 1, and unþ1
0 ¼ unþ1

1 and unþ1
N ¼ unþ1

N�1 for the homogeneous Neumann boundary conditions.
The nonlinear system (58) can be solved by using a nonlinear Gauss–Seidel procedure that converges since the iteration

matrix function has spectral radius strictly less than one [33].
A semi-implicit Crank–Nicolson scheme can be formulated by using an

j�1; an
j and an

jþ1 as nonlinear coefficients on the left
hand side of (58) instead of anþ1

j�1 ; anþ1
j and anþ1

jþ1 . The resulting scheme is significantly more efficient since the nonlinear coef-
ficients are computed once in every time step. Let us remark that the matrix of the linear system is not symmetric but it is
diagonally dominant and therefore the convergence of the Gauss-Seidel iterative method is ensured. We have found through
our numerical experiments that the semi-implicit Crank–Nicolson scheme becomes stable for Dt ¼ OðhÞ.

4.2. Two-dimensional numerical approximation of the relativistic heat equation

We consider the initial-boundary value problem for the two-dimensional relativistic heat equation
ut ¼ m
@

@x
uux

½u2 þ r2ðu2
x þ u2

yÞ þ ��
1
2

0
@

1
Aþ m

@

@y
uuy

½u2 þ r2ðu2
x þ u2

yÞ þ ��
1
2

0
@

1
A ð59Þ
for t > 0; a 6 x; y 6 b with the initial data
uðx; y; 0Þ ¼ u0ðx; yÞ a 6 x; y 6 b ð60Þ
of compact support and homogeneous Neumann boundary conditions
uxða; y; tÞ ¼ uxðb; y; tÞ ¼ uyðx; a; tÞ ¼ uyðx; b; tÞ ¼ 0 ð61Þ
We will use a uniform grid with Dx ¼ Dy ¼ h > 0 with h ¼ b�a
N with N the number of subdivisions of the computational do-

main. We define xj :¼ aþ jh; j ¼ 0; . . . ;N and yk :¼ aþ kh; k ¼ 0; . . . ;N. We denote by tn ¼ nDt where Dt > 0 is the time step
size. We set the value un

jk the numerical approximation of uðxj; yk; tnÞ and we define u0
jk ¼ u0ðxj; ykÞ; j ¼ 0; . . . ;N; k ¼ 0; . . . ;N.

The first order conservative scheme can be expressed as
unþ1
jk ¼ Dt

h2 An
j�1

2;k
un

j�1;k þ
Dt

h2 Bn
j;k�1

2
un

j;k�1 þ 1� Dt

h2 An
j�1

2;k
þ Bn

j;k�1
2
þ An

jþ1
2;k
þ Bn

j;kþ1
2

� �� �
un

jk þ
Dt

h2 Bn
j;kþ1

2
un

j;kþ1 þ
Dt

h2 An
jþ1

2;k
un

jþ1;k ð62Þ

An
jþ1

2;k
¼

m 1
2 ðun

jk þ un
jþ1;kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

un
jk
þun

jþ1;k
2

� �2
þ r2

h2 ðun
jþ1;k � un

jkÞ
2 þ

0:5ðun
j;kþ1
þun

jþ1;kþ1
Þ�0:5ðun

j;k�1
þun

jþ1;k�1
Þ

2

� �2
� �

þ �
s ð63Þ
and
Bn
j;kþ1

2
¼

m 1
2 ðun

jk þ un
j;kþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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0:5ðun
jþ1;k
þun
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Þ�0:5ðun

j�1;k
þun
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Þ

2

� �2
� �

þ �
s ð64Þ
where r ¼ m
c. From Theorem 1 this scheme is stable if Dt is constrained to the Courant–Friedrichs–Lewy condition
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Dt

h2 6
1

4m
ð65Þ
Similarly as performed in the one-dimensional case, we can relax the parabolic stability restriction by using either a full im-
plicit or semi-implicit Crank–Nicolson procedure.

The scheme based on the trapezoidal rule can be written as
Lnþ1ðunþ1Þjk ¼ RnðunÞjk ð66Þ
where Lnþ1 and Rn are operators acting on the vectors unþ1 and un, respectively, and are defined as
Lnþ1ðunþ1Þjk ¼ �
1
2

Dt

h2 Anþ1
j�1

2;k
unþ1

j�1;k �
1
2

Dt

h2 Bnþ1
j;k�1

2
unþ1

j;k�1 þ 1þ 1
2
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h2 Anþ1
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2;k
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j;k�1
2
þ Anþ1

jþ1
2;k
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2

� �� �
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2

� Dt

h2 Bnþ1
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2
unþ1
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1
2

Dt

h2 Anþ1
jþ1

2;k
unþ1

jþ1;k ð67Þ

RnðunÞjk ¼
1
2
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h2 An
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2;k
un
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2
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h2 Bn
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2
un
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2
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h2 An
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þ Bn

j;k�1
2
þ An

jþ1
2;k
þ Bn

j;kþ1
2

� �� �
un

jk þ
1
2

Dt

h2 Bn
j;kþ1

2
un

j;kþ1 þ
1
2

� Dt

h2 An
jþ1

2;k
un

jþ1;k ð68Þ
The scheme (66) is fully implicit Crank–Nicolson. A semi-implicit version can be formulated as
Lnðunþ1Þjk ¼ RnðunÞjk ð69Þ
Both schemes are second order accurate in space and time and consist of solving Eqs. (66) or (69) at every time step. The
same remarks stated for the one-dimensional case apply for this case. The semi-implicit scheme is recommended due to
the obvious computational advantages concerning cost.

5. Numerical experiments

In this section we present numerical approximations to the relativistic heat equation for a set of different problems. We
present first, third and fifth order accurate approximations of the solution using different initial data under homogeneous
Neumann boundary conditions. The results of the proposed scheme and its high order accurate versions show good behavior
according to the analytic properties examined above. Numerical results indicate that the algorithms behave stably and accu-
rate, resolving sharply jump discontinuities (diffusion fronts) with correct speed of propagation.

Let �u represent a high order accurate approximation of u. High order accuracy in space is obtained combining the basic
solver as the proposed explicit conservative scheme or the semi-implicit Crank–Nicolson scheme together with a high order
accurate reconstruction procedure. This is done dimension by dimension by means of the high order accurate reconstruction
procedures applied to the conserved variable and its partial divided differences present in each coefficient of the nonlinear
convex combination defining the scheme. A way to implement a high order accurate reconstruction procedure consists of
determining an elementary function Rj at each computational cell Ij ¼ xj�1

2
; xjþ1

2

h i
of length h > 0 such that the mean value

of Rj in the cell is the given data
uj ¼
1
h

Z x
jþ1

2

x
j�1

2

RjðzÞdz ð70Þ
and approximates the variable up to some order of accuracy in the cell [30]. We then obtain high accurate values of u at both
sides of the interface xjþ1

2
as
�uþ
jþ1

2
¼ Rjðxjþh

2
Þ ð71Þ
and
�u�jþ1
2
¼ Rjþ1ðxjþh

2
Þ ð72Þ
The high order accurate value of the first derivative of u at the interface xjþ1
2

is obtained by calculating a function
Sj : ½xj; xjþ1� ! R such that
ujþ1 � uj

h
¼ 1

h

Z x
jþ1

2

x
j�1

2

SjðzÞdz ð73Þ
Then the approximation of ux at xjþ1
2

is
ð�uxÞjþ1
2
¼ Sjðxjþh

2
Þ ð74Þ
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Fig. 1. Example 1: Results at time t ¼ 0:2; c ¼ 1; m ¼ 1; � ¼ 1 � e� 12. Left column, explicit conservative scheme. Right column, semi-implicit Crank–
Nicolson. Top to bottom, first order EC-1 and CN-1, third order EC-PHM-RK3 and CN-PHM-RK3 and fifth order EC-WPowerENO-RK3 and CN-WPowerENO-
RK3 approximations.
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Therefore the high order accurate value of Aðuj;ujþ1Þ, (57) will be
Fig. 2.
initial d
Ajþ1
2
¼

m
2 ð�u�jþ1

2
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2
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�u�
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2
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2
2

 !2

þ r2ð�uxÞ2jþ1
2

vuut
ð75Þ
For the two-dimensional case, we use the one-dimensional procedure in each direction.
As reconstruction procedures we implement the third order accurate piecewise hyperbolic method (PHM) [23,29] that

uses hyperbolas as elementary functions and the fifth order accurate Weighted PowerENO (WPowerENO) method [28] that
is based on convex combinations of parabolas. The main advantage of using high order accuracy is that shock discontinuities
are obtained sharper as higher is the order of the reconstruction procedure. Since the goal of our numerical experiments is to
capture emerging shocks we will preferable use the fifth order version of the scheme to resolve them sharply.

The last step in the high order implementation is to achieve high order accuracy in time. For that purpose we use a third
order accurate strong stability preserving Runge–Kutta method (RK3) [30,31].

The notation we will use to refer to the different schemes and orders of accuracy are as follows. For the basic solvers, we
denote EC for the proposed explicit conservative scheme, and CN for the semi-implicit Crank–Nicolson scheme. We then add
the corresponding labels for the order of accuracy being 1 for first order, PHM for third order and WPowerENO for fifth order.
The last label to add will correspond to the Runge–Kutta method for the cases where high order accuracy is used.

5.1. Example 1: Square wave problem

In this experiment we approximate the solution of the one-dimensional relativistic heat equation, Eq. (53) with c ¼ 1 and
m ¼ 1; for the ‘‘square wave” initial data
u0ðxÞ ¼
1; � 1

2 6 x 6 1
2

0; elsewhere

(

in x 2 ½�1;1� under homogeneous Neumann boundary conditions.
We compute until time t ¼ 0:2 with a grid of 500 points. We run the conservative numerical scheme (explicit) 25,000

iterations with Dt ¼ 0:5h2 and � ¼ 1 � e� 12 and the semi-implicit Crank–Nicolson scheme 800 iterations with Dt ¼ 1
16 h.

Left column in Fig. 1 displays the numerical approximation obtained with the explicit conservative scheme for different
order approximations: first (EC-1), third (EC-PHM-RK3) and fifth order (EC-WPowerENO-RK3), top to bottom, respectively.
Right column displays the corresponding numerical approximations(results) computed with the semi-implicit Crank–Nicol-
son scheme with first (CN-1), third (CN-PHM-RK3) and fifth (CN-WPowerENO-RK3) order accuracy, respectively.

We observe that the first order explicit and semi-implicit schemes perform stable and accurate and jump discontinuities
are propagated at correct speed. High order versions of the respective schemes behave similarly with sharper resolution in
jump discontinuities. The advantage of the semi-implicit scheme with respect to the explicit ones relies on the speed up of
the computational cost.
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Example 2: Explicit conservative EC-PHM-RK3 (left) and EC-WPowerENO5-RK3 (right) approximations at times t ¼ 0:2 (‘‘	”) and t ¼ 0:4 (‘‘+”) versus
ata (‘‘�”).
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5.2. Example 2: Semi-circle wave problem

We consider the one-dimensional relativistic heat equation Eq. (53) with c ¼ 1; m ¼ 1. The initial data is a semi-circle de-
fined in x 2 ½�1;1� by
Fig. 3.
initial d
u0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� x2
p

; � 1
2 6 x 6 1

2

0; elsewhere

(

with homogeneous Neumann boundary conditions. This is a case of a continuous initial data with compact support such that
the slopes at both ends of the support are vertical. This example shows numerical evidence that the solution of the relativ-
istic heat equation with a continuous function as initial data might develop diffusion fronts at finite time.

We compute the approximate solution at times t ¼ 0:2 and t ¼ 0:4 with a uniform grid of 500 points. We run the explicit
conservative scheme with Dt ¼ 0:5 	 h2. In Fig. 2 we display the numerical approximation of the solution at both times
t ¼ 0:2 represented with ‘‘	” and t ¼ 0:4 with ‘‘+”. In the left are the results computed with the explicit conservative third
order accurate scheme (EC-PHM-RK3) and in the right the ones with the fifth order accurate version (EC-WPowerENO-RK3).

The results show that both calculations capture jump discontinuities evolving to the right and to the left with speed c ¼ 1.
These are diffusion fronts formed at finite time. We observe that the resolution of the jump discontinuities is sharper for the
fifth order accurate case.
5.3. Example 3: Initial double wave problem

We consider the one-dimensional relativistic heat equation Eq. (53) with c ¼ 1; m ¼ 1; and an initial data in x 2 ½�1;1�
consisting on two ‘‘square waves” with disjoint supports located at a positive distance. This initial data is defined by
u0ðxÞ ¼
0:6; � 1

2 6 x 6 � 1
4

0:8; 1
4 6 x 6 1

2

0; elsewhere

8><
>:
with homogeneous Neumann boundary conditions.
We compute the approximation of the solution at times t ¼ 0:2 and t ¼ 0:4 using a uniform grid of 500 points. The numer-

ical approximations at time t ¼ 0:2 maintains the two waves with disconnected supports. At time t ¼ 0:4 the supports merge
into one which is connected and the interior fronts disappear.

We run the explicit conservative scheme with Dt ¼ 0:5 	 h2. Fig. 3 displays the numerical approximation of the solution at
both times t ¼ 0:2 and t ¼ 0:4 represented with ‘‘	” and‘‘+”, respectively. Left picture includes the results with the explicit
conservative third order accurate scheme (EC-PHM-RK3) and the right one the results with the explicit conservative fifth
order accurate scheme (EC-WPowerENO-RK3). Both schemes behave stable and accurate and propagate jump discontinuities
at correct speed.
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Example 3: Explicit conservative EC-PHM-RK3 (left) and EC-WPowerENO5-RK3 (right) approximations at times t ¼ 0:2 (‘‘	”) and t ¼ 0:4 (‘‘+”) versus
ata (‘‘�”).
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initial data (‘‘�”). Right, zoomed region of the left picture.
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5.4. Example 4: Double step problem

We consider the initial-boundary value problem with the one-dimensional relativistic heat equation under homogeneous
Neumann boundary conditions and the compactly supported initial data
m.

2671
u0ðxÞ ¼

2; jxj 6 1
1; �2 6 x < �1
1; 1 6 x 6 2
0; elsewhere

8>>><
>>>:
defined in x 2 ½�3;3�.
In this linear combination of characteristic functions the discontinuities are initially located at x ¼ 
1 and x ¼ 
2. The

expected evolution of this initial predicts that discontinuities at x ¼ 
1 disappear in finite time since the diffusion coefficient
around x ¼ 
1 is proportional to u3 and that diffusion fronts located initially at x ¼ 
2 survive and propagate at finite speed
ðc ¼ 1Þ expanding the support of the evolving signal.

We compute the approximate solution with a uniform grid of 500 grid points using the fifth order version of the proposed
explicit conservative scheme, EC-WPowerENO5-RK3, with Dt ¼ 0:5h2. Left picture in Fig. 4 displays the numerical approxi-
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Fig. 6. Example 5: Results at time t ¼ 0:4 versus x-sections. Top to bottom: first order EC-1, third order EC-PHM-RK3 and fifth order EC-WPowerENO-RK3
approximations.
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mation of the solution computed at times t ¼ 0:025; t ¼ 0:1 and t ¼ 0:2 represented by ‘‘�”, ‘‘	” and‘‘+”, respectively. We ob-
serve that initial discontinuities at x
 1 disappear at short time and diffusion fronts remain jump discontinuities that prop-
agate at correct speed. Diffusion fronts are resolved sharp for the high order accurate approximations. Right picture in Fig. 4
shows zoomed regions of left picture around the right diffusion front. We observe that the discontinuity front has a vertical
contact angle as predicted in the analytical results presented in [5].

5.5. Example 5: Disc problem

We consider the two-dimensional relativistic heat Eq. (59) with c ¼ 1 and m ¼ 1. The initial data displayed in Fig. 5 con-
sists of the characteristic function of a disc of height 1 and radius 0.5 centered in the domain D ¼ ½�1;1� � ½�1;1�. The initial
diffusion front is a jump discontinuity at the boundary of the support of the function. The evolution of this data through the
relativistic heat equation spreads out the diffusion front with constant velocity in the outward direction preserving the shape
of a circle which radius at time t > 0 will be rðtÞ ¼ 0:5þ t since c ¼ 1. We have computed the approximate solution of the
relativistic heat equation at time t ¼ 0:4 using a uniform grid of 100� 100 grid points in D. We use the explicit conservative
scheme with a time step Dt ¼ 0:25h2 where h ¼ 0:02. Left column in Fig. 6 displays, from top to bottom, the numerical solu-
tion for the first EC-1, third EC-PHM-RK3 and fifth EC-WPowerENO5-RK3 order accurate schemes, respectively. In the right
column in same figure we depict the corresponding central x-section of the numerical solutions in left column.

5.6. Example 6: Relativistic porous media equation

We consider a one-dimensional initial-boundary value problem for the following generalization of the relativistic heat
equation that can be considered a porous media type equation
Fig. 7.
initial d
ut ¼ m
umuxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ r2u2
x

p
 !

x

ð76Þ
with m > 1. The initial data we assume is defined in [�2,2] as
u0ðxÞ ¼maxð1� x2; 0Þ ð77Þ
under homogeneous Neumann boundary conditions. The goal of this experiment consists in observing that the initial signal,
which is continuous, develops jump discontinuities at the boundaries of the support in finite time. We can observe two dif-
ferent phases in the evolution. The first stage corresponds to the growth of the slope of the contact angle until it becomes
vertical and the second begins when the discontinuity breaks and starts propagating with finite speed expanding the
support.

In our calculations we set m ¼ 2 and use a uniform grid of 500 points and Dt ¼ 0:5 	 h2 where h ¼ 4
500. We compute the

approximate solution with the fifth order accurate version of the explicit conservative scheme EC-WPowerENO5-RK3 at
times t ¼ 0:1; 0:2 and 0:4 represented in the left picture of Fig. 7 with ‘‘�”, ‘‘	” and‘‘+”, respectively. We observe that around
time t ¼ 0:2 the contact angle becomes vertical and fronts start evolving with finite speed. Right picture of the figure shows
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Example 6: Left, explicit conservative fifth order EC-WPowerENO-RK3 approximations at times t ¼ 0:1 (‘‘�”), t ¼ 0:2 (‘‘	”) and t ¼ 0:4 (‘‘+”) versus
ata (‘‘�”). Right, zoomed region of the left picture.
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the zoomed left angle region were we observe the growing of the slope of the contact angle at different times of the
evolution.

The numerical results presented in this section indicate that the proposed scheme is robust, behaves stably and captures
sharply diffusion fronts with a correct speed of propagation. The results are in accordance with the mathematical theory
developed by Andreu and collaborators in [1,2,4,5].

6. Conclusions

We have proposed a conservative finite difference numerical scheme to approximate the solution of initial-boundary va-
lue problems for a class of limited diffusion Fokker–Planck equations under homogeneous Neumann boundary conditions.
We have proved that the numerical scheme preserves positivity, satisfies a discrete local maximum principle and is stable
under a Courant–Friedrichs–Lewy time step restriction. We have analyzed the dynamics of the relativistic heat equation as a
model example of the generalized class of Fokker–Planck equations and presented numerical experiments in one and two
dimensions showing the presence of diffusion fronts that propagate with finite velocity for the case where the initial data
is continuous.
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